Section 4.3
The Mean Value Theorem

(1) Rolle's Theorem and the Mean Value Theorem
(2) The First Derivative Test



Rolle's Theorem

Suppose that f is a function such that
(I) f is continuous on [a, b],

(1) f is differentiable on (a, b),

(lI1) f(a)=f(b).

Then there exists a value ¢ in (a,b) such that f'(c) =0.

(e,f(c))

(af(a)) (b,f(b))

Equivalently: there is a value ¢ in (a,b) such that the tangent line at
(¢, f(c)) is parallel to the secant line from (a,f(a)) to (b, f(b)).
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Rolle’s Theorem

Suppose that f is a function such that
(I) f is continuous on [a, b],

(1) f is differentiable on (a, b),

(1) f(a)=f(b).

Then there exists a value ¢ in (a,b) such that f'(c) =0.

Equivalently: there is a value ¢ in (a,b) such that the tangent line at
(¢, f(c)) is parallel to the secant line from (a,f(a)) to (b, f(b)).

What if we drop the assumption that f(a) =f(b)?



The Mean Value Theorem (MVT)

Suppose that f is a function that is (1) continuous on [a, b], and (Il)
differentiable on (a, b).
f(b)-f(a)

Then there exists a value ¢ in (a,b) such that f'(c) = -

Idea: Take the secant line from (a,f(a)) to (b,f(b)) and slide it until it
becomes a tangent line.
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Mean Value Theorem: Examples

3

Example 1: Let f(x)=x>—x on the interval [0,2].

Solution: The requirements of the Mean Value Theorem are satisfied
since polynomials are differentiable (thus continuous) everywhere.

f(0)=0 f(2)=6 Secant line slope: %(f)(()) =3

The MVT guarantees that there is some c in (0,2) such that f'(c) =3.

In this case we can find ¢ explicitly:

3=f'(c)=3c?-1 3c?=4

— c¢c=—==1.155
3
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Mean Value Theorem: Examples

Example 2: Let f(x)=x*-x?-3x on the interval [0,2].
Solution: The requirements of the Mean Value Theorem are satisfied
since polynomials are differentiable (thus continuous) everywhere.

f(2)-f(0
Secant line slope: %O() =3

f(0)=0  f(2)=6

The MVT guarantees that there is some c in (0,2) such that f'(c) =3.

(2,£(2))
. L 5 Ex*-x2-3x ;"
Can we find ¢ explicitly? 4 Le°
3 'G'
3=f(c)=4c3-2c-3 : Lot
= 4c3-2c-6=0 - >
(0,f( 1 'o!
No, but we know it must exist! Cff'(c))
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Mean Value Theorem: Examples

Example 3: Let f(x)=tan(x).

Since f(0) = f(m), does Rolle’s Theorem guarantee that there is a value ¢
in (0,7) such that '(c) =07

— NO, because f(x) is not continuous on [0, 7].

(In fact, f'(x) =sec?(x) >0 for all x in the domain.)



Mean Value Theorem:Examples

Example 4: Find M and m such that m<f(-2)< M if f is a function
where f(1)=3 and -1 = f'(x) <4 for all x.

Solutions:

Since f'(x) exists everywhere, the Mean Value Theorem applies to f(x)
on the interval [-2,1]. There exist Some ¢ in (-2,1) where

S
f'(c) :ﬁﬁ/f:—(i(z—f) L3S f3(—2) = Slope of Secant line

= 3f'(c)=3-f(-2) = f(-2)=3-3f'(c)

::3—3(4)sf(c)s3—3(—1):>;gs f(—2)s\6,_‘
m M
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Consequences of the Mean Value Theorem
Theorem 1: If f'(x) =0 for all x in (a,b), then f is constant on (a,b).

Theorem 2: If f'(x) >0 for all x in (a,b), then f is increasing on (a, b).

Theorem 3: If f'(x) =g'(x) for all x in (a,b), then f(x)=g(x)+C,
where C is some constant.

Proof of Theorem 1: Suppose that A, B are arbitrary numbers with
a<A<B<b.

Since f' exists for all values in (a,b), f is continuous and differentiable on
(a,b) and MVT holds on the interval [A, B].

Therefore, there exists ¢ in [A, B] such that

f(c) = B:A

_f(B)-f(A)
But f'(c) =0, so f(B) - f(A)=(B-A)0=0.



Consequences of the Mean Value Theorem
Theorem 1: If f'(x) =0 for all x in (a,b), then f is constant on (a,b).

Theorem 2: If f'(x) >0 for all x in (a,b), then f is increasing on (a, b).

Theorem 3: If f'(x) =g'(x) for all x in (a,b), then f(x)=g(x)+C,
where C is some constant.

Proof of Theorem 2: We need to prove that if a< A< B < b, then
f(A) < f(B). Again, apply the MVT to the interval [A B]. The
conclusion is that there exists c in [A, B] such that

But f’(¢)>0and B-A>0, so f(B)-f(A)>0, i.e., f(B)>f(A).



Consequences of the Mean Value Theorem
Theorem 1: If f'(x) =0 for all x in (a,b), then f is constant on (a,b).

Theorem 2: If f'(x) >0 for all x in (a,b), then f is increasing on (a, b).

Theorem 3: If f'(x) =g'(x) for all x in (a,b), then f(x)=g(x)+C,
where C is some constant.

Proof of Theorem 3: Let h(x) = f(x) —g(x).
Since f'(x) = g'(x), it follows that #'(x)=0 on (a,b).

Now Theorem 1 implies that h(x)= C on (a,b), where C is some
constant.

Therefore f(x) =g(x)+ C.



The First Derivative Test

First Derivative Test for Local Extrema
Suppose that c is a critical number of a continuous function f.

(I) If £ changes from positive to negative at c, then f has a local
maximum at c.

(1) If f' changes from negative to positive at ¢, then f has a local
minimum at c.

(II1) If £ does not change sign at c, then c is not a local extremum.

v

<

Local Max

Neither

Local Min

Local Min



Example 5: Find the local extrema of f if f/(x) = (x—4)3(x+3)7(x-2)®.

Solution: Observe that f has critical numbers {-3,2,4}.

Break the number line into intervals at the critical numbers.

Then determine the sign of f/(x) at some value in each interval.

F(x) |

f'(x) :

@ (=3,f(-3)): local maximum point
@ (2,1(2)): not an extremum
°

(4,7(4)): local minimum point
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Example 6: Find the local extrema of the function f(x) =

x(x-2)
Solution: First, calculate f'(x) using the Quotient Rule:
, x(x=2)[2(x+1)] = (x+1)?[2x-2]
Fe= x2(x—2)2
C2x+ 1)(x(x=2)=(x+1)(x—-1)) _2(x+1)(1-2x)
- x2(x—2)2 T X2(x-2)2

Critical numbers: —1,%,0,2. Note that 0,2 are not in the domain of f.

- + + i ra
f'(x) % — %
-1 05 2

By the First Derivative Test, x=—1 is a local minimum and x:% is a
local maximum.
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Example 6 (continued): Find the local extrema of the function
F(x) = (x+1)?
X)= x(x=2)"

By the First Derivative Test, x=—1 is a local minimum and x = % is a

local maximum.

_(x+1)?
' x(x-2)

-15 -10 -5 5 10 15
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