
Section 4.3
The Mean Value Theorem

(1) Rolle’s Theorem and the Mean Value Theorem
(2) The First Derivative Test



Rolle’s Theorem
Suppose that f is a function such that
(I) f is continuous on [a,b],
(II) f is differentiable on (a,b),
(III) f (a)= f (b).
Then there exists a value c in (a,b) such that f ′(c)= 0.

(a, f (a)) (b, f (b))

(c , f (c))

Equivalently: there is a value c in (a,b) such that the tangent line at
(c , f (c)) is parallel to the secant line from (a, f (a)) to (b, f (b)).



Rolle’s Theorem
Suppose that f is a function such that
(I) f is continuous on [a,b],
(II) f is differentiable on (a,b),
(III) f (a)= f (b).
Then there exists a value c in (a,b) such that f ′(c)= 0.

Equivalently: there is a value c in (a,b) such that the tangent line at
(c , f (c)) is parallel to the secant line from (a, f (a)) to (b, f (b)).

What if we drop the assumption that f (a)= f (b)?



The Mean Value Theorem (MVT)
Suppose that f is a function that is (I) continuous on [a,b], and (II)
differentiable on (a,b).

Then there exists a value c in (a,b) such that f ′(c)= f (b)− f (a)

b−a
.

Idea: Take the secant line from (a, f (a)) to (b, f (b)) and slide it until it
becomes a tangent line.

(a, f (a))

(b, f (b))

(a, f (a))

(b, f (b))

(c , f (c))

(d , f (d))



Mean Value Theorem: Examples
Example 1: Let f (x)= x3−x on the interval [0,2].

Solution: The requirements of the Mean Value Theorem are satisfied
since polynomials are differentiable (thus continuous) everywhere.

f (0)= 0 f (2)= 6 Secant line slope:
f (2)− f (0)

2−0
= 3

The MVT guarantees that there is some c in (0,2) such that f ′(c)= 3.

In this case we can find c explicitly:

3= f ′(c)= 3c2−1 3c2 = 4

=⇒ c = 2p
3
≈ 1.155

(0, f (0))

(2, f (2))
y = x3−x

(1.155, f (1.155))



Mean Value Theorem: Examples
Example 2: Let f (x)= x4−x2−3x on the interval [0,2].

Solution: The requirements of the Mean Value Theorem are satisfied
since polynomials are differentiable (thus continuous) everywhere.

f (0)= 0 f (2)= 6 Secant line slope:
f (2)− f (0)

2−0
= 3

The MVT guarantees that there is some c in (0,2) such that f ′(c)= 3.

Can we find c explicitly?

3= f ′(c)= 4c3−2c −3
⇒ 4c3−2c −6= 0

No, but we know it must exist!
1 2

1
2
3
4
5y = x4−x2−3x

(0, f (0))

(2, f (2))

(c , f (c))



Mean Value Theorem: Examples

Example 3: Let f (x)= tan(x).

Since f (0)= f (π), does Rolle’s Theorem guarantee that there is a value c
in (0,π) such that f ′(c)= 0?

— NO, because f (x) is not continuous on [0,π].

y
= t
an
(x
) x = π

2x =− π
2 x = 3π

2

(In fact, f ′(x)= sec2(x)> 0 for all x in the domain.)



Mean Value Theorem:Examples

Example 4: Find M and m such that m≤ f (−2)≤M if f is a function
where f (1)= 3 and −1≤ f ′(x)≤ 4 for all x .

Solutions:

Since f ′(x) exists everywhere, the Mean Value Theorem applies to f (x)
on the interval [−2,1]. There exist Some c in (−2,1) where

f ′(c)=�
��*

3
f (1)− f (−2)
1− (−2) = 3− f (−2)

3
= Slope of Secant line

=⇒ 3f ′(c)= 3− f (−2)=⇒ f (−2)= 3−3f ′(c)

=⇒ 3−3(4)≤ f (c)≤ 3−3(−1)=⇒ −9︸︷︷︸
m

≤ f (−2)≤ 6︸︷︷︸
M



Consequences of the Mean Value Theorem
Theorem 1: If f ′(x)= 0 for all x in (a,b), then f is constant on (a,b).

Theorem 2: If f ′(x)> 0 for all x in (a,b), then f is increasing on (a,b).

Theorem 3: If f ′(x)= g ′(x) for all x in (a,b), then f (x)= g(x)+C ,
where C is some constant.

Proof of Theorem 1: Suppose that A,B are arbitrary numbers with
a<A<B < b.

Since f ′ exists for all values in (a,b), f is continuous and differentiable on
(a,b) and MVT holds on the interval [A,B].

Therefore, there exists c in [A,B] such that

f ′(c)= f (B)− f (A)

B −A

But f ′(c)= 0, so f (B)− f (A)= (B −A)0= 0.



Consequences of the Mean Value Theorem
Theorem 1: If f ′(x)= 0 for all x in (a,b), then f is constant on (a,b).

Theorem 2: If f ′(x)> 0 for all x in (a,b), then f is increasing on (a,b).

Theorem 3: If f ′(x)= g ′(x) for all x in (a,b), then f (x)= g(x)+C ,
where C is some constant.

Proof of Theorem 2: We need to prove that if a<A<B < b, then
f (A)< f (B). Again, apply the MVT to the interval [A,B]. The
conclusion is that there exists c in [A,B] such that

f ′(c)= f (B)− f (A)

B −A
.

But f ′(c)> 0 and B −A> 0, so f (B)− f (A)> 0, i.e., f (B)> f (A).



Consequences of the Mean Value Theorem
Theorem 1: If f ′(x)= 0 for all x in (a,b), then f is constant on (a,b).

Theorem 2: If f ′(x)> 0 for all x in (a,b), then f is increasing on (a,b).

Theorem 3: If f ′(x)= g ′(x) for all x in (a,b), then f (x)= g(x)+C ,
where C is some constant.

Proof of Theorem 3: Let h(x)= f (x)−g(x).

Since f ′(x)= g ′(x), it follows that h′(x)= 0 on (a,b).

Now Theorem 1 implies that h(x)=C on (a,b), where C is some
constant.

Therefore f (x)= g(x)+C .



The First Derivative Test

First Derivative Test for Local Extrema
Suppose that c is a critical number of a continuous function f .
(I) If f ′ changes from positive to negative at c , then f has a local

maximum at c .
(II) If f ′ changes from negative to positive at c , then f has a local

minimum at c .
(III) If f ′ does not change sign at c , then c is not a local extremum.

x

y

Local Min

Local Max

Neither

Local Min



Example 5: Find the local extrema of f if f ′(x)= (x−4)3(x+3)7(x−2)6.

Solution: Observe that f has critical numbers {−3,2,4}.

Break the number line into intervals at the critical numbers.

Then determine the sign of f ′(x) at some value in each interval.

−3 2 4
f ′(x)

−3 2 4
f ′(x)

+ − − +

(−3, f (−3)): local maximum point
(2, f (2)): not an extremum
(4, f (4)): local minimum point



Example 6: Find the local extrema of the function f (x)= (x +1)2

x(x −2)
.

Solution: First, calculate f ′(x) using the Quotient Rule:

f ′(x)= x(x −2)
[
2(x +1)

]− (x +1)2
[
2x −2

]
x2(x −2)2

= 2(x +1)
(
x(x −2)− (x +1)(x −1)

)
x2(x −2)2

= 2(x +1)(1−2x)
x2(x −2)2

Critical numbers: −1, 1
2 ,0,2. Note that 0,2 are not in the domain of f .

f ′(x)
-1 0 .5 2

− + + − −

By the First Derivative Test, x =−1 is a local minimum and x = 1
2 is a

local maximum.



Example 6 (continued): Find the local extrema of the function

f (x)= (x +1)2

x(x −2)
.

By the First Derivative Test, x =−1 is a local minimum and x = 1
2 is a

local maximum.

x

y

−15 −10 −5 5 10 15

−5

5y = (x +1)2

x(x −2)


