Section 4.3
 The Mean Value Theorem

(1) Rolle's Theorem and the Mean Value Theorem
(2) The First Derivative Test

Rolle's Theorem

Suppose that f is a function such that
(I) f is continuous on $[a, b]$,
(II) f is differentiable on (a, b),
(III) $f(a)=f(b)$.

Then there exists a value c in (a, b) such that $f^{\prime}(c)=0$.

Equivalently: there is a value c in (a, b) such that the tangent line at $(c, f(c))$ is parallel to the secant line from $(a, f(a))$ to $(b, f(b))$.

Rolle's Theorem

Suppose that f is a function such that
(I) f is continuous on $[a, b]$,
(II) f is differentiable on (a, b),
(III) $f(a)=f(b)$.

Then there exists a value c in (a, b) such that $f^{\prime}(c)=0$.

Equivalently: there is a value c in (a, b) such that the tangent line at $(c, f(c))$ is parallel to the secant line from $(a, f(a))$ to $(b, f(b))$.

What if we drop the assumption that $f(a)=f(b)$?

The Mean Value Theorem (MVT)

Suppose that f is a function that is (I) continuous on [a, b], and (II) differentiable on (a, b).
Then there exists a value c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Idea: Take the secant line from $(a, f(a))$ to $(b, f(b))$ and slide it until it becomes a tangent line.

Mean Value Theorem: Examples

Example 1: Let $f(x)=x^{3}-x$ on the interval $[0,2]$.
Solution: The requirements of the Mean Value Theorem are satisfied since polynomials are differentiable (thus continuous) everywhere.

$$
f(0)=0 \quad f(2)=6 \quad \text { Secant line slope: } \frac{f(2)-f(0)}{2-0}=3
$$

The MVT guarantees that there is some c in $(0,2)$ such that $f^{\prime}(c)=3$.

In this case we can find c explicitly:

$$
\begin{gathered}
3=f^{\prime}(c)=3 c^{2}-1 \quad 3 c^{2}=4 \\
\Longrightarrow \quad c=\frac{2}{\sqrt{3}} \approx 1.155
\end{gathered}
$$

Mean Value Theorem: Examples

Example 2: Let $f(x)=x^{4}-x^{2}-3 x$ on the interval $[0,2]$.
Solution: The requirements of the Mean Value Theorem are satisfied since polynomials are differentiable (thus continuous) everywhere.

$$
f(0)=0 \quad f(2)=6 \quad \text { Secant line slope: } \frac{f(2)-f(0)}{2-0}=3
$$

The MVT guarantees that there is some c in $(0,2)$ such that $f^{\prime}(c)=3$.

Can we find c explicitly?
$3=f^{\prime}(c)=4 c^{3}-2 c-3$
$\Rightarrow 4 c^{3}-2 c-6=0$
No, but we know it must exist!

Mean Value Theorem: Examples

Example 3: Let $f(x)=\tan (x)$.
Since $f(0)=f(\pi)$, does Rolle's Theorem guarantee that there is a value c in $(0, \pi)$ such that $f^{\prime}(c)=0$?

- NO, because $f(x)$ is not continuous on $[0, \pi]$.

(In fact, $f^{\prime}(x)=\sec ^{2}(x)>0$ for all x in the domain.)

Mean Value Theorem:Examples

Example 4: Find M and m such that $m \leq f(-2) \leq M$ if f is a function where $f(1)=3$ and $-1 \leq f^{\prime}(x) \leq 4$ for all x.

Solutions:
Since $f^{\prime}(x)$ exists everywhere, the Mean Value Theorem applies to $f(x)$ on the interval $[-2,1]$. There exist Some c in $(-2,1)$ where

$$
\begin{aligned}
& f^{\prime}(c)= \frac{f(1)^{3}-f(-2)}{1-(-2)}=\frac{3-f(-2)}{3}=\text { Slope of Secant line } \\
& \Longrightarrow 3 f^{\prime}(c)=3-f(-2) \Longrightarrow f(-2)=3-3 f^{\prime}(c) \\
& \Longrightarrow 3-3(4) \leq f(c) \leq 3-3(-1) \Longrightarrow \underbrace{-9}_{m} \leq f(-2) \leq \underbrace{6}_{M}
\end{aligned}
$$

Consequences of the Mean Value Theorem

Theorem 1: If $f^{\prime}(x)=0$ for all x in (a, b), then f is constant on (a, b).
Theorem 2: If $f^{\prime}(x)>0$ for all x in (a, b), then f is increasing on (a, b).
Theorem 3: If $f^{\prime}(x)=g^{\prime}(x)$ for all x in (a, b), then $f(x)=g(x)+C$, where C is some constant.

Proof of Theorem 1: Suppose that A, B are arbitrary numbers with $a<A<B<b$.

Since f^{\prime} exists for all values in $(a, b), f$ is continuous and differentiable on (a, b) and MVT holds on the interval $[A, B]$.

Therefore, there exists c in $[A, B]$ such that

$$
f^{\prime}(c)=\frac{f(B)-f(A)}{B-A}
$$

But $f^{\prime}(c)=0$, so $f(B)-f(A)=(B-A) 0=0$.

Consequences of the Mean Value Theorem

Theorem 1: If $f^{\prime}(x)=0$ for all x in (a, b), then f is constant on (a, b).
Theorem 2: If $f^{\prime}(x)>0$ for all x in (a, b), then f is increasing on (a, b).
Theorem 3: If $f^{\prime}(x)=g^{\prime}(x)$ for all x in (a, b), then $f(x)=g(x)+C$, where C is some constant.

Proof of Theorem 2: We need to prove that if $a<A<B<b$, then $f(A)<f(B)$. Again, apply the MVT to the interval $[A, B]$. The conclusion is that there exists c in $[A, B]$ such that

$$
f^{\prime}(c)=\frac{f(B)-f(A)}{B-A} .
$$

But $f^{\prime}(c)>0$ and $B-A>0$, so $f(B)-f(A)>0$, i.e., $f(B)>f(A)$.

Consequences of the Mean Value Theorem

Theorem 1: If $f^{\prime}(x)=0$ for all x in (a, b), then f is constant on (a, b).
Theorem 2: If $f^{\prime}(x)>0$ for all x in (a, b), then f is increasing on (a, b).
Theorem 3: If $f^{\prime}(x)=g^{\prime}(x)$ for all x in (a, b), then $f(x)=g(x)+C$, where C is some constant.

Proof of Theorem 3: Let $h(x)=f(x)-g(x)$.
Since $f^{\prime}(x)=g^{\prime}(x)$, it follows that $h^{\prime}(x)=0$ on (a, b).
Now Theorem 1 implies that $h(x)=C$ on (a, b), where C is some constant.

Therefore $f(x)=g(x)+C$.

The First Derivative Test

First Derivative Test for Local Extrema

Suppose that c is a critical number of a continuous function f.
(I) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(II) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
(III) If f^{\prime} does not change sign at c, then c is not a local extremum.

Example 5: Find the local extrema of f if $f^{\prime}(x)=(x-4)^{3}(x+3)^{7}(x-2)^{6}$.

Solution: Observe that f has critical numbers $\{-3,2,4\}$.
Break the number line into intervals at the critical numbers.
Then determine the sign of $f^{\prime}(x)$ at some value in each interval.

$f^{\prime}(x)$

- $(-3, f(-3))$: local maximum point
- $(2, f(2))$: not an extremum
- (4,f(4)): local minimum point

Example 6: Find the local extrema of the function $f(x)=\frac{(x+1)^{2}}{x(x-2)}$.
Solution: First, calculate $f^{\prime}(x)$ using the Quotient Rule:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x(x-2)[2(x+1)]-(x+1)^{2}[2 x-2]}{x^{2}(x-2)^{2}} \\
& =\frac{2(x+1)(x(x-2)-(x+1)(x-1))}{x^{2}(x-2)^{2}}=\frac{2(x+1)(1-2 x)}{x^{2}(x-2)^{2}}
\end{aligned}
$$

Critical numbers: $-1, \frac{1}{2}, 0,2$. Note that 0,2 are not in the domain of f.

By the First Derivative Test, $x=-1$ is a local minimum and $x=\frac{1}{2}$ is a local maximum.

Example 6 (continued): Find the local extrema of the function $f(x)=\frac{(x+1)^{2}}{x(x-2)}$.

By the First Derivative Test, $x=-1$ is a local minimum and $x=\frac{1}{2}$ is a local maximum.

